3.1.27 \(\int \frac {\cos ^4(a+b x)}{x^2} \, dx\) [27]

3.1.27.1 Optimal result
3.1.27.2 Mathematica [A] (verified)
3.1.27.3 Rubi [A] (verified)
3.1.27.4 Maple [A] (verified)
3.1.27.5 Fricas [A] (verification not implemented)
3.1.27.6 Sympy [F]
3.1.27.7 Maxima [C] (verification not implemented)
3.1.27.8 Giac [C] (verification not implemented)
3.1.27.9 Mupad [F(-1)]

3.1.27.1 Optimal result

Integrand size = 12, antiderivative size = 66 \[ \int \frac {\cos ^4(a+b x)}{x^2} \, dx=-\frac {\cos ^4(a+b x)}{x}-b \operatorname {CosIntegral}(2 b x) \sin (2 a)-\frac {1}{2} b \operatorname {CosIntegral}(4 b x) \sin (4 a)-b \cos (2 a) \text {Si}(2 b x)-\frac {1}{2} b \cos (4 a) \text {Si}(4 b x) \]

output
-cos(b*x+a)^4/x-b*cos(2*a)*Si(2*b*x)-1/2*b*cos(4*a)*Si(4*b*x)-b*Ci(2*b*x)* 
sin(2*a)-1/2*b*Ci(4*b*x)*sin(4*a)
 
3.1.27.2 Mathematica [A] (verified)

Time = 0.23 (sec) , antiderivative size = 79, normalized size of antiderivative = 1.20 \[ \int \frac {\cos ^4(a+b x)}{x^2} \, dx=-\frac {3+4 \cos (2 (a+b x))+\cos (4 (a+b x))+8 b x \operatorname {CosIntegral}(2 b x) \sin (2 a)+4 b x \operatorname {CosIntegral}(4 b x) \sin (4 a)+8 b x \cos (2 a) \text {Si}(2 b x)+4 b x \cos (4 a) \text {Si}(4 b x)}{8 x} \]

input
Integrate[Cos[a + b*x]^4/x^2,x]
 
output
-1/8*(3 + 4*Cos[2*(a + b*x)] + Cos[4*(a + b*x)] + 8*b*x*CosIntegral[2*b*x] 
*Sin[2*a] + 4*b*x*CosIntegral[4*b*x]*Sin[4*a] + 8*b*x*Cos[2*a]*SinIntegral 
[2*b*x] + 4*b*x*Cos[4*a]*SinIntegral[4*b*x])/x
 
3.1.27.3 Rubi [A] (verified)

Time = 0.31 (sec) , antiderivative size = 70, normalized size of antiderivative = 1.06, number of steps used = 3, number of rules used = 3, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.250, Rules used = {3042, 3794, 2009}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {\cos ^4(a+b x)}{x^2} \, dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \frac {\sin \left (a+b x+\frac {\pi }{2}\right )^4}{x^2}dx\)

\(\Big \downarrow \) 3794

\(\displaystyle 4 b \int \left (-\frac {\sin (2 a+2 b x)}{4 x}-\frac {\sin (4 a+4 b x)}{8 x}\right )dx-\frac {\cos ^4(a+b x)}{x}\)

\(\Big \downarrow \) 2009

\(\displaystyle 4 b \left (-\frac {1}{4} \sin (2 a) \operatorname {CosIntegral}(2 b x)-\frac {1}{8} \sin (4 a) \operatorname {CosIntegral}(4 b x)-\frac {1}{4} \cos (2 a) \text {Si}(2 b x)-\frac {1}{8} \cos (4 a) \text {Si}(4 b x)\right )-\frac {\cos ^4(a+b x)}{x}\)

input
Int[Cos[a + b*x]^4/x^2,x]
 
output
-(Cos[a + b*x]^4/x) + 4*b*(-1/4*(CosIntegral[2*b*x]*Sin[2*a]) - (CosIntegr 
al[4*b*x]*Sin[4*a])/8 - (Cos[2*a]*SinIntegral[2*b*x])/4 - (Cos[4*a]*SinInt 
egral[4*b*x])/8)
 

3.1.27.3.1 Defintions of rubi rules used

rule 2009
Int[u_, x_Symbol] :> Simp[IntSum[u, x], x] /; SumQ[u]
 

rule 3042
Int[u_, x_Symbol] :> Int[DeactivateTrig[u, x], x] /; FunctionOfTrigOfLinear 
Q[u, x]
 

rule 3794
Int[((c_.) + (d_.)*(x_))^(m_)*sin[(e_.) + (f_.)*(x_)]^(n_), x_Symbol] :> Si 
mp[(c + d*x)^(m + 1)*(Sin[e + f*x]^n/(d*(m + 1))), x] - Simp[f*(n/(d*(m + 1 
)))   Int[ExpandTrigReduce[(c + d*x)^(m + 1), Cos[e + f*x]*Sin[e + f*x]^(n 
- 1), x], x], x] /; FreeQ[{c, d, e, f, m}, x] && IGtQ[n, 1] && GeQ[m, -2] & 
& LtQ[m, -1]
 
3.1.27.4 Maple [A] (verified)

Time = 0.74 (sec) , antiderivative size = 90, normalized size of antiderivative = 1.36

method result size
derivativedivides \(b \left (-\frac {\cos \left (4 b x +4 a \right )}{8 b x}-\frac {\operatorname {Si}\left (4 b x \right ) \cos \left (4 a \right )}{2}-\frac {\operatorname {Ci}\left (4 b x \right ) \sin \left (4 a \right )}{2}-\frac {\cos \left (2 b x +2 a \right )}{2 b x}-\operatorname {Si}\left (2 b x \right ) \cos \left (2 a \right )-\operatorname {Ci}\left (2 b x \right ) \sin \left (2 a \right )-\frac {3}{8 b x}\right )\) \(90\)
default \(b \left (-\frac {\cos \left (4 b x +4 a \right )}{8 b x}-\frac {\operatorname {Si}\left (4 b x \right ) \cos \left (4 a \right )}{2}-\frac {\operatorname {Ci}\left (4 b x \right ) \sin \left (4 a \right )}{2}-\frac {\cos \left (2 b x +2 a \right )}{2 b x}-\operatorname {Si}\left (2 b x \right ) \cos \left (2 a \right )-\operatorname {Ci}\left (2 b x \right ) \sin \left (2 a \right )-\frac {3}{8 b x}\right )\) \(90\)
risch \(\frac {4 \,{\mathrm e}^{-2 i a} \pi \,\operatorname {csgn}\left (b x \right ) b x +4 i {\mathrm e}^{-2 i a} \operatorname {Ei}_{1}\left (-2 i x b \right ) b x -2 i b \,\operatorname {Ei}_{1}\left (-4 i x b \right ) {\mathrm e}^{4 i a} x +2 i \operatorname {Ei}_{1}\left (-4 i x b \right ) {\mathrm e}^{-4 i a} b x +2 \,{\mathrm e}^{-4 i a} \pi \,\operatorname {csgn}\left (b x \right ) b x -4 i b \,\operatorname {Ei}_{1}\left (-2 i x b \right ) {\mathrm e}^{2 i a} x -8 \,{\mathrm e}^{-2 i a} \operatorname {Si}\left (2 b x \right ) b x -4 \,{\mathrm e}^{-4 i a} \operatorname {Si}\left (4 b x \right ) b x -\cos \left (4 b x +4 a \right )-4 \cos \left (2 b x +2 a \right )-3}{8 x}\) \(154\)

input
int(cos(b*x+a)^4/x^2,x,method=_RETURNVERBOSE)
 
output
b*(-1/8*cos(4*b*x+4*a)/b/x-1/2*Si(4*b*x)*cos(4*a)-1/2*Ci(4*b*x)*sin(4*a)-1 
/2*cos(2*b*x+2*a)/b/x-Si(2*b*x)*cos(2*a)-Ci(2*b*x)*sin(2*a)-3/8/b/x)
 
3.1.27.5 Fricas [A] (verification not implemented)

Time = 0.30 (sec) , antiderivative size = 66, normalized size of antiderivative = 1.00 \[ \int \frac {\cos ^4(a+b x)}{x^2} \, dx=-\frac {2 \, \cos \left (b x + a\right )^{4} + b x \operatorname {Ci}\left (4 \, b x\right ) \sin \left (4 \, a\right ) + 2 \, b x \operatorname {Ci}\left (2 \, b x\right ) \sin \left (2 \, a\right ) + b x \cos \left (4 \, a\right ) \operatorname {Si}\left (4 \, b x\right ) + 2 \, b x \cos \left (2 \, a\right ) \operatorname {Si}\left (2 \, b x\right )}{2 \, x} \]

input
integrate(cos(b*x+a)^4/x^2,x, algorithm="fricas")
 
output
-1/2*(2*cos(b*x + a)^4 + b*x*cos_integral(4*b*x)*sin(4*a) + 2*b*x*cos_inte 
gral(2*b*x)*sin(2*a) + b*x*cos(4*a)*sin_integral(4*b*x) + 2*b*x*cos(2*a)*s 
in_integral(2*b*x))/x
 
3.1.27.6 Sympy [F]

\[ \int \frac {\cos ^4(a+b x)}{x^2} \, dx=\int \frac {\cos ^{4}{\left (a + b x \right )}}{x^{2}}\, dx \]

input
integrate(cos(b*x+a)**4/x**2,x)
 
output
Integral(cos(a + b*x)**4/x**2, x)
 
3.1.27.7 Maxima [C] (verification not implemented)

Result contains complex when optimal does not.

Time = 0.32 (sec) , antiderivative size = 717, normalized size of antiderivative = 10.86 \[ \int \frac {\cos ^4(a+b x)}{x^2} \, dx=\text {Too large to display} \]

input
integrate(cos(b*x+a)^4/x^2,x, algorithm="maxima")
 
output
1/32*(((exp_integral_e(2, 4*I*b*x) + exp_integral_e(2, -4*I*b*x))*cos(2*a) 
^2 + (exp_integral_e(2, 4*I*b*x) + exp_integral_e(2, -4*I*b*x))*sin(2*a)^2 
)*cos(4*a)^3 + ((-I*exp_integral_e(2, 4*I*b*x) + I*exp_integral_e(2, -4*I* 
b*x))*cos(2*a)^2 + (-I*exp_integral_e(2, 4*I*b*x) + I*exp_integral_e(2, -4 
*I*b*x))*sin(2*a)^2)*sin(4*a)^3 + 4*((exp_integral_e(2, 2*I*b*x) + exp_int 
egral_e(2, -2*I*b*x))*cos(2*a)^3 + (-I*exp_integral_e(2, 2*I*b*x) + I*exp_ 
integral_e(2, -2*I*b*x))*sin(2*a)^3 + ((exp_integral_e(2, 2*I*b*x) + exp_i 
ntegral_e(2, -2*I*b*x))*cos(2*a) + 3)*sin(2*a)^2 + (exp_integral_e(2, 2*I* 
b*x) + exp_integral_e(2, -2*I*b*x))*cos(2*a) + 3*cos(2*a)^2 + ((-I*exp_int 
egral_e(2, 2*I*b*x) + I*exp_integral_e(2, -2*I*b*x))*cos(2*a)^2 - I*exp_in 
tegral_e(2, 2*I*b*x) + I*exp_integral_e(2, -2*I*b*x))*sin(2*a))*cos(4*a)^2 
 + (4*(exp_integral_e(2, 2*I*b*x) + exp_integral_e(2, -2*I*b*x))*cos(2*a)^ 
3 + 4*(-I*exp_integral_e(2, 2*I*b*x) + I*exp_integral_e(2, -2*I*b*x))*sin( 
2*a)^3 + 4*((exp_integral_e(2, 2*I*b*x) + exp_integral_e(2, -2*I*b*x))*cos 
(2*a) + 3)*sin(2*a)^2 + ((exp_integral_e(2, 4*I*b*x) + exp_integral_e(2, - 
4*I*b*x))*cos(2*a)^2 + (exp_integral_e(2, 4*I*b*x) + exp_integral_e(2, -4* 
I*b*x))*sin(2*a)^2)*cos(4*a) + 4*(exp_integral_e(2, 2*I*b*x) + exp_integra 
l_e(2, -2*I*b*x))*cos(2*a) + 12*cos(2*a)^2 + 4*((-I*exp_integral_e(2, 2*I* 
b*x) + I*exp_integral_e(2, -2*I*b*x))*cos(2*a)^2 - I*exp_integral_e(2, 2*I 
*b*x) + I*exp_integral_e(2, -2*I*b*x))*sin(2*a))*sin(4*a)^2 + ((exp_int...
 
3.1.27.8 Giac [C] (verification not implemented)

Result contains higher order function than in optimal. Order 9 vs. order 4.

Time = 0.38 (sec) , antiderivative size = 3220, normalized size of antiderivative = 48.79 \[ \int \frac {\cos ^4(a+b x)}{x^2} \, dx=\text {Too large to display} \]

input
integrate(cos(b*x+a)^4/x^2,x, algorithm="giac")
 
output
1/4*(b*x*imag_part(cos_integral(4*b*x))*tan(2*b*x)^2*tan(b*x)^2*tan(2*a)^2 
*tan(a)^2 + 2*b*x*imag_part(cos_integral(2*b*x))*tan(2*b*x)^2*tan(b*x)^2*t 
an(2*a)^2*tan(a)^2 - 2*b*x*imag_part(cos_integral(-2*b*x))*tan(2*b*x)^2*ta 
n(b*x)^2*tan(2*a)^2*tan(a)^2 - b*x*imag_part(cos_integral(-4*b*x))*tan(2*b 
*x)^2*tan(b*x)^2*tan(2*a)^2*tan(a)^2 + 2*b*x*sin_integral(4*b*x)*tan(2*b*x 
)^2*tan(b*x)^2*tan(2*a)^2*tan(a)^2 + 4*b*x*sin_integral(2*b*x)*tan(2*b*x)^ 
2*tan(b*x)^2*tan(2*a)^2*tan(a)^2 - 4*b*x*real_part(cos_integral(2*b*x))*ta 
n(2*b*x)^2*tan(b*x)^2*tan(2*a)^2*tan(a) - 4*b*x*real_part(cos_integral(-2* 
b*x))*tan(2*b*x)^2*tan(b*x)^2*tan(2*a)^2*tan(a) - 2*b*x*real_part(cos_inte 
gral(4*b*x))*tan(2*b*x)^2*tan(b*x)^2*tan(2*a)*tan(a)^2 - 2*b*x*real_part(c 
os_integral(-4*b*x))*tan(2*b*x)^2*tan(b*x)^2*tan(2*a)*tan(a)^2 + b*x*imag_ 
part(cos_integral(4*b*x))*tan(2*b*x)^2*tan(b*x)^2*tan(2*a)^2 - 2*b*x*imag_ 
part(cos_integral(2*b*x))*tan(2*b*x)^2*tan(b*x)^2*tan(2*a)^2 + 2*b*x*imag_ 
part(cos_integral(-2*b*x))*tan(2*b*x)^2*tan(b*x)^2*tan(2*a)^2 - b*x*imag_p 
art(cos_integral(-4*b*x))*tan(2*b*x)^2*tan(b*x)^2*tan(2*a)^2 + 2*b*x*sin_i 
ntegral(4*b*x)*tan(2*b*x)^2*tan(b*x)^2*tan(2*a)^2 - 4*b*x*sin_integral(2*b 
*x)*tan(2*b*x)^2*tan(b*x)^2*tan(2*a)^2 - b*x*imag_part(cos_integral(4*b*x) 
)*tan(2*b*x)^2*tan(b*x)^2*tan(a)^2 + 2*b*x*imag_part(cos_integral(2*b*x))* 
tan(2*b*x)^2*tan(b*x)^2*tan(a)^2 - 2*b*x*imag_part(cos_integral(-2*b*x))*t 
an(2*b*x)^2*tan(b*x)^2*tan(a)^2 + b*x*imag_part(cos_integral(-4*b*x))*t...
 
3.1.27.9 Mupad [F(-1)]

Timed out. \[ \int \frac {\cos ^4(a+b x)}{x^2} \, dx=\int \frac {{\cos \left (a+b\,x\right )}^4}{x^2} \,d x \]

input
int(cos(a + b*x)^4/x^2,x)
 
output
int(cos(a + b*x)^4/x^2, x)